

EUROPEAN EMISSION STANDARDS EVOLUTION AND IMPACT ON AUTOMOTIVE MARKET

Ricardo Soares

ricardo.soares@hyundai.pt

POLLUTANT AND GREENHOUSE GAS EMISSIONS [LDV]

Carbon monoxide (CO), highly toxic, measured in mg/km

Unburned hydrocarbons (HC), toxicity depends on the detailed chemical composition, measured in mg/km

PM10

Nitrogen oxides NO and NO2 (commonly treated as NOx) harmful to human health and photochemical effects in the atmosphere measured in mg/km

Particulates (soot and ash) measured as PM in mg/km and PN measured in number/km

CO2 is the natural result of the combustion process of carbon containing fuels (Gasoline, Diesel, but also alcohols and natural gas). CO2 is by far the most important greenhouse gas.

Material particulado | PM

Contaminante microscópico, emitido por fuentes fijas y móviles. Los números 10 y 2.5 equivalen a su tamaño.

PM**2.5**

•••

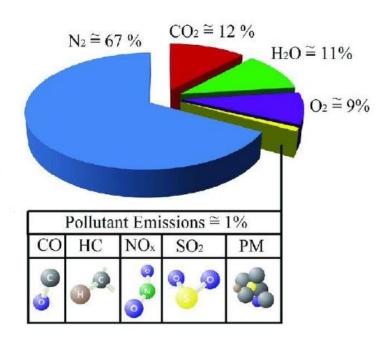
Methane (CH4) can be a bi-product of the combustion as other unburned hydrocarbons.

POLLUTANT AND GREENHOUSE GAS EMISSIONS [LDV]

Carbon monoxide (<u>CO</u>), highly toxic, measured in mg/km

Unburned hydrocarbons (<u>HC</u>), toxicity depends on the detailed chemical composition, measured in mg/km

Particulates (soot and ash) measured as <u>PM</u> in mg/km and PN measured in number/km


CO2 is the natural result of the combustion process of carbon containing fuels (Gasoline, Diesel, but also alcohols and natural gas). CO2 is by far the most important greenhouse gas.

Nitrogen oxides <u>NO</u> and <u>NO2</u> (commonly treated as <u>NOx</u>) harmful to human health and photochemical effects in the atmosphere measured in mg/km

Methane (CH4) can be a bi-product of the combustion as other unburned hydrocarbons.

POLLUTANTS MEAN LESS THAN 1% TOTAL EMISSIONS

Q

EVEN SO THEY ARE A MAIN FOCUS

OF THE INDUSTRY

EURO EMISSION STANDARDS EVOLUTION

1992

1970

Creation and Enforcement of EURO 1

Enforcement of Unleaded Gasoline

EURO EMISSION STANDARDS EVOLUTION

Stage	Date	со	HC	HC+NOx	NOx	PM	PN			
Stage	Dute	g/km					#/km			
Compression Igniti	Compression Ignition (Diesel)									
Euro 1†	1992.07	2.72 (3.16)	-	0.97 (1.13)	-	0.14 (0.18)	-			
Euro 2, IDI	1996.01	1.0	-	0.7	-	0.08	-			
Euro 2, DI	1996.01 ^a	1.0	-	0.9	-	0.10	-			
Euro 3	2000.01	0.64	-	0.56	0.50	0.05	-			
Euro 4	2005.01	0.50	-	0.30	0.25	0.025	-			
Euro 5a	2009.09 ^b	0.50	-	0.23	0.18	0.005 ^f	-			
Euro 5b	2011.09 ^c	0.50	-	0.23	0.18	0.005 ^f	6.0×10 ¹¹			
Euro 6	2014.09	0.50	-	0.17	0.08	0.005 ^f	6.0×10 ¹¹			
Positive Ignition (G	asoline)									
Euro 1†	1992.07	2.72 (3.16)	-	0.97 (1.13)	-	-	-			
Euro 2	1996.01	2.2	-	0.5	-	-	-			
Euro 3	2000.01	2.30	0.20	-	0.15	-	-			
Euro 4	2005.01	1.0	0.10	-	0.08	-	-			
Euro 5	2009.09 ^b	1.0	0.10 ^d	-	0.06	0.005 ^{e,f}	-			
Euro 6	2014.09	1.0	0.10 ^d	-	0.06	0.005 ^{e,f}	6.0×10 ^{11 e.g}			

Notes:

* At the Euro 1-4 stages, passenger vehicles > 2,500 kg were type approved as Category N1 vehicles

† Values in brackets are conformity of production (COP) limits

a. until 1999.09.30 (after that date DI engines must meet the IDI limits)

b. 2011.01 for all models

c. 2013.01 for all models

d. and NMHC = 0.068 g/km

e. applicable only to vehicles using DI engines

f. 0.0045 g/km using the PMP measurement procedure

g. 6.0×10¹² 1/km within first three years from Euro 6 effective dates

EURO EMISSION STANDARDS EVOLUTION

Stage	Date	CO	HC	HC+NOx	NOx	PM	PN
orago	Duro	g/km					#/km
Compression Igniti	on (Diesel)						
Euro 1†	1992.07	2.72 (3.16)	-	0.97 (1.13)	-	0.14 (0.18)	-
Euro 2, IDI	1996.01	1.0	-	0.7	-	0.08	-
Euro 2, DI	1996.01 ^a	1.0	-	0.9	-	0.10	-
Euro 3	2000.01	•.64 -81%	-	°.56 -82%	0.50	••• -96%	-
Euro 4	2005.01	0.50	-	0.30	0.25	0.025	-
Euro 5a	2009.09 ^b	0.50	-	0.23	0.18	0.005 ^f	
Euro 5b	2011.09 ^c	0.50	-	0.23	0.18	0.005 ^f	6.0×10 ¹¹
Euro 6	2014.09	0.50	-	0.17	0.08	0.005 ^f	6.0×10 ¹¹
Positive Ignition (G	asoline)						
Euro 1†	1992.07	2.72 (3.16)	-	0.97 (1.13)	-	-	-
Euro 2	1996.01	2.2	-	0.5	-	-	-
Euro 3	2000.01	2.30	0.20	-	0.15	-	-
Euro 4	2005.01	1.0	0.10	-	0.08	-	-
Euro 5	2009.09 ^b	1.0	0.10 ^d	-	0.06	0.005 ^{e,f}	-
Euro 6	2014.09	1.0	0.10 ^d	-	0.06	0.005 ^{e,f}	6.0×10 ^{11 e.g}

Notes:

' At the Euro 1-4 stages, passenger vehicles > 2,500 kg were type approved as Category N_i vehicles

† Values in brackets are conformity of production (COP) limits

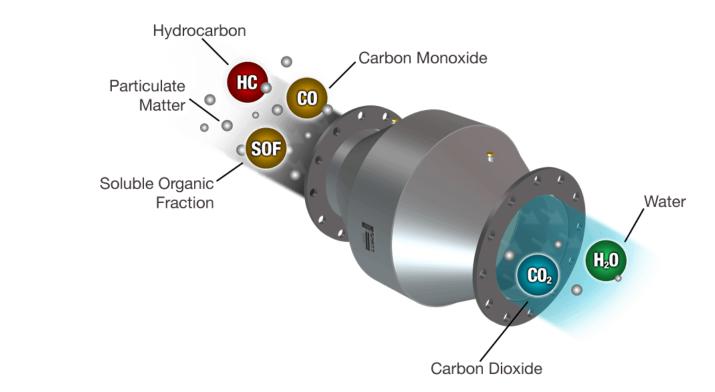
a. until 1999.09.30 (after that date DI engines must meet the IDI limits)

b. 2011.01 for all models

c. 2013.01 for all models

d. and NMHC = 0.068 g/km

e. applicable only to vehicles using DI engines


f. 0.0045 g/km using the PMP measurement procedure

g. 6.0×10^12 1/km within first three years from Euro 6 effective dates

		Pet	rol	Diesel		
Standard	Year	Engine Measures	Engine Measures Exaust		Exaust	
Euro 1	1992	Fuel Injection	3 way Catalyst + lambda	Combustion System and intake systems improvement		

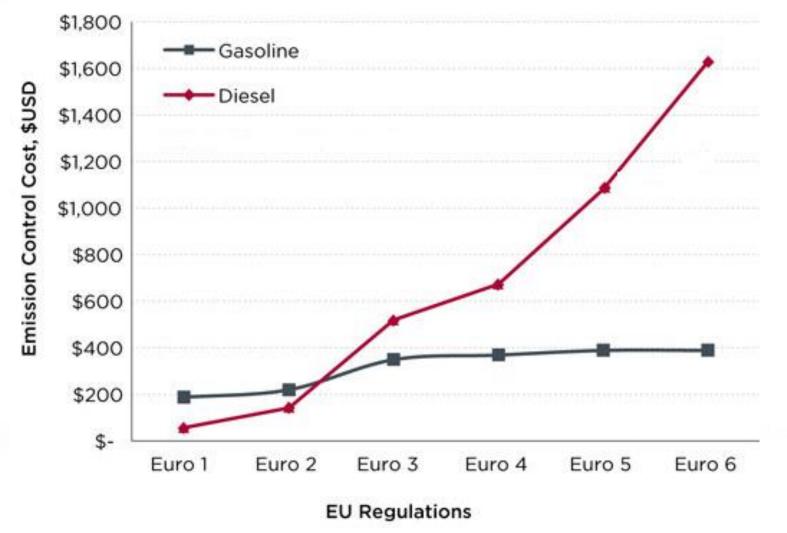
		Pet	rol	Diesel		
Standard	Year	Engine Measures	Exaust	Engine Measures	Exaust	
Euro 1	1992	Fuel Injection	3 way Catalyst + lambda	Combustion System and intake systems improvement		
Euro 2	1996	Improved ECU	Larger Catalyst	Direct Injection; Fuel pressure improvement	Oxidation catalyst	

	Petrol			Die	esel
Standard	Year	Engine Measures	Exaust	Engine Measures	Exaust
Euro 1	1992	Fuel Injection	3 way Catalyst + lambda	Combustion System and intake systems improvement	
Euro 2	1996	Improved ECU	Larger Catalyst	Direct Injection; Fuel pressure improvement	Oxidation catalyst
Euro 3	2000	OBD	Pre-Catalyst + Dual lambda	EGR, Common Rail	Pre-Catalyst and Main Catalyst

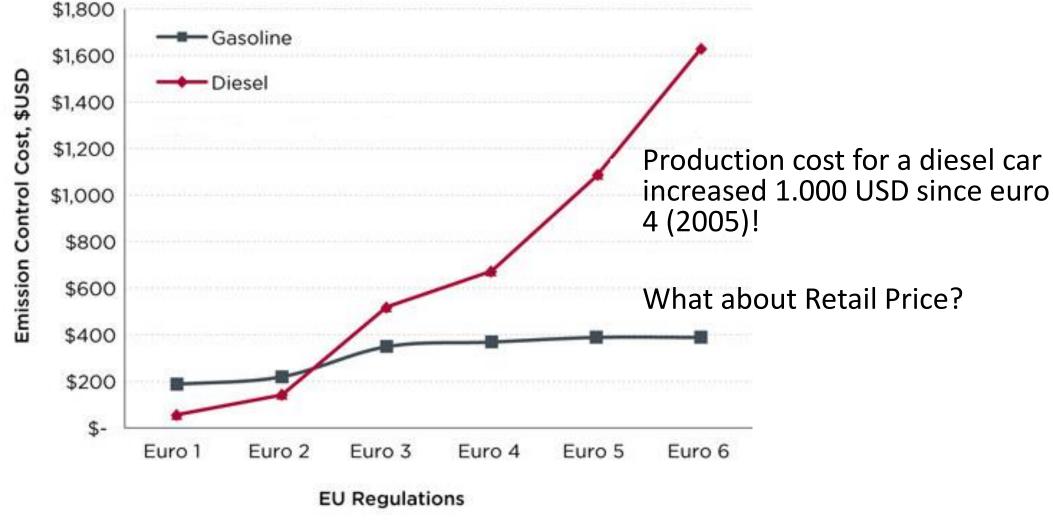
		Pe	trol	Die	esel	
Standard	Year	Engine Measures	Exaust	Engine Measures	Exaust	
Euro 1	1992	Fuel Injection	3 way Catalyst + lambda	Combustion System and intake systems improvement		
Euro 2	1996	Improved ECU	Larger Catalyst	Direct Injection; Fuel pressure improvement	Oxidation catalyst	
Euro 3	2000	OBD	Pre-Catalyst + Dual lambda	EGR, Common Rail	Pre-Catalyst and Main Catalyst	
Euro 4	2005	System Optimization	Closer placement of 1st Catalyst	Multiple Injection; Pressure Increase	Pre-Catalyst and Main Catalyst Start of DPF usage	

https://ec.europa.eu/jrc/sites/jrcsh/files/policies-reduce-air-emissions_19oct-morning_2.pdf

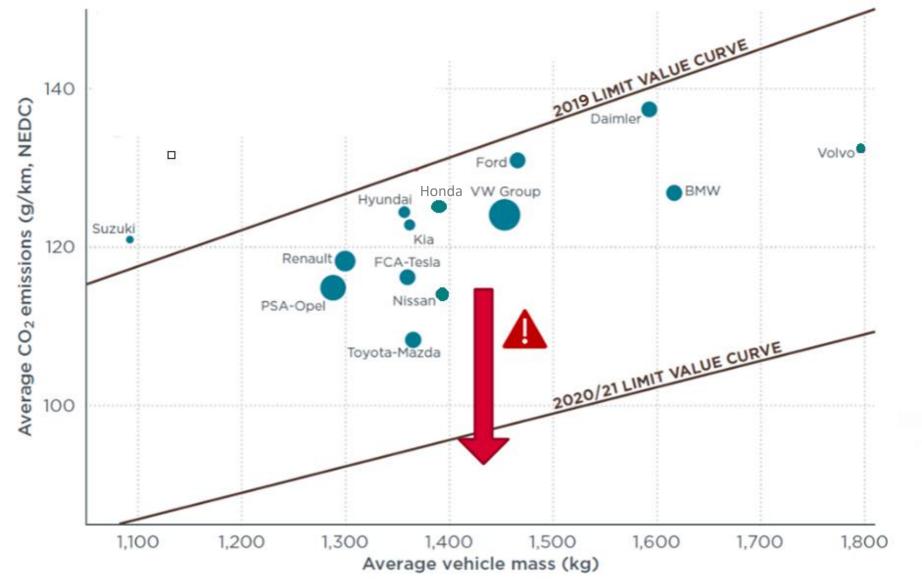
		Pet	rol	Diesel		
Standard	Year	Engine Measures	Exaust	Engine Measures	Exaust	
Euro 1	1992	Fuel Injection	3 way Catalyst + lambda	Combustion System and intake systems improvement		
Euro 2	1996	Improved ECU	Larger Catalyst	Direct Injection; Fuel pressure improvement	Oxidation catalyst	
Euro 3	2000	OBD	Pre-Catalyst + Dual lambda	EGR, Common Rail	Pre-Catalyst and Main Catalyst	
Euro 4	2005	System Optimization	Closer placement of 1st Catalyst	Multiple Injection; Pressure Increase	Pre-Catalyst and Main Catalyst Start of DPF usage	
Euro 5	2010	Mainstream Direct Injection; VVT; S&S MHEV	More thermally durable - placed just after manifold	Cooled EGR and Combustion Optimization	DPF Mandatory	


https://ec.europa.eu/jrc/sites/jrcsh/files/policies-reduce-air-emissions_19oct-morning_2.pdf

	1	Pet	rol	Diesel		
Standard	Year	Engine Measures	Exaust	Engine Measures	Exaust	
Euro 1	1992	Fuel Injection	3 way Catalyst + lambda	Combustion System and intake systems improvement		
Euro 2	1996	Improved ECU	Larger Catalyst	Direct Injection; Fuel pressure improvement	Oxidation catalyst	
Euro 3	2000	OBD	Pre-Catalyst + Dual lambda	EGR, Common Rail	Pre-Catalyst and Main Catalyst	
Euro 4	2005	System Optimization	Closer placement of 1st Catalyst	Multiple Injection; Pressure Increase	Pre-Catalyst and Main Catalyst Start of DPF usage	
Euro 5	2010	Mainstream Direct Injection; VVT; S&S MHEV	More thermally durable - placed just after manifold	Cooled EGR and Combustion Optimization	DPF Mandatory	
Euro 6	2014	GDI – Controlled Combustion	Start usage of GPF	High Pressure Injection	SCR	


		Pet	trol	Die	esel
Standard	Year	Engine Measures	Exaust	Engine Measures	Exaust
Euro 1	1992	Fuel Injection	3 way Catalyst + lambda	Combustion System and intake systems improvement	
Euro 2	1996	Improved ECU	Larger Catalyst	Direct Injection; Fuel pressure improvement	Oxidation catalyst
Euro 3	2000	OBD	Pre-Catalyst +Dual lambda	EGR / Common Rail	Pre-Catalyst and Main Catalyst
Euro 4	2005	System Optimization	Closer placement of est Catalyst	Multiple Injection; Pressure Increase	Pre-Catalyst and Main Catalyst Start of DPF usage
Euro 5	2010	Mainstream Direct Injection; VVT; S&S MHEV	More thermally durable - placed just after manifold	Cooled EGR and Combustion Optimization	DPF Mandatory
Euro 6	2014	GDI – Controlled Combustion	Start usage of GPF	High Pressure Injection	SCR
Total and		Lambda control loop 1 Intake air 2 Fuel supply 3 Injector 4 Electronic control unit 5 Control sensor (upstream of catalytic converter) 6 Catalytic converter) 7 Exhaust gas 8 Diagnostic sensor (downstream of catalytic converter)			

HOW MUCH DID IT COST TO GET TO EURO 6?

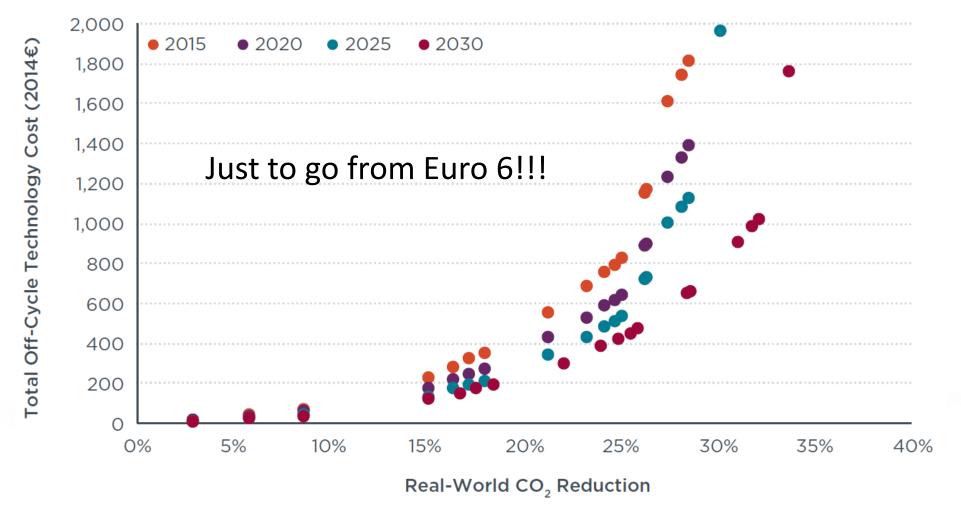

Estimated Average Cumulative Emission Control Technology Cost for Gasoline and Diesel Engine assuming 2.0L Engine

HOW MUCH DID IT COST TO GET TO EURO 6?

Estimated Average Cumulative Emission Control Technology Cost for Gasoline and Diesel Engine assuming 2.0L Engine

CHALLENGE FROM 2019 TO 2020/21

http://eupocketbook.org/


CO2 STANDARDS 2020- 2030

Reg. (EU) 2019/631	2020	2021	2022	2023	2024		2025+	2030+
NEDC CO2 target [gCO2/km]	95		9	5	- 1:	5%	81 - 37,5	59
Indicative WLTP CO2 target [gCO2/km]	Oem A		[1:	10]			[95]	[70]
	Phase-in 95% of fleet							
Flexibilities	ZLEV* Super Max 7,5gCO2		•				Exceed below ZL Max 5% target r	
	2	1,67	1,33	1			15%	35%
						nnovations 2/km each		

* ZLEV = Zero- and Low Emission Vehicle (< 50 gCO2/km ≈ BEV/PHEV)

Penalty: 95€/ g CO2 / car

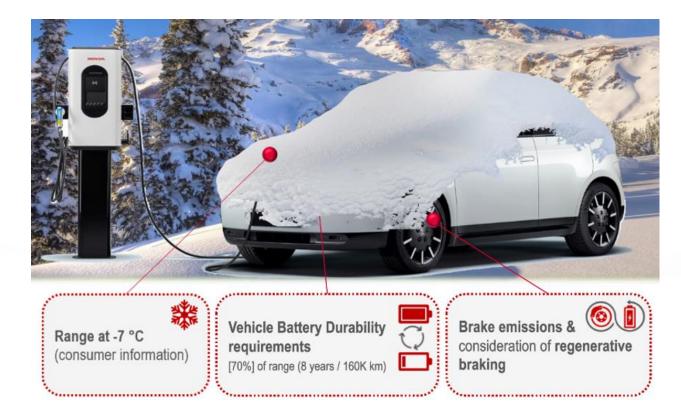
HOW MUCH WILL IT COST?

Off-Cycle Technology Package Benefits and Costs (base 2014 Euro6, Lower-Medium Car)

EURO 7 – WHAT CONSEQUENCES FOR INDUSTRY?

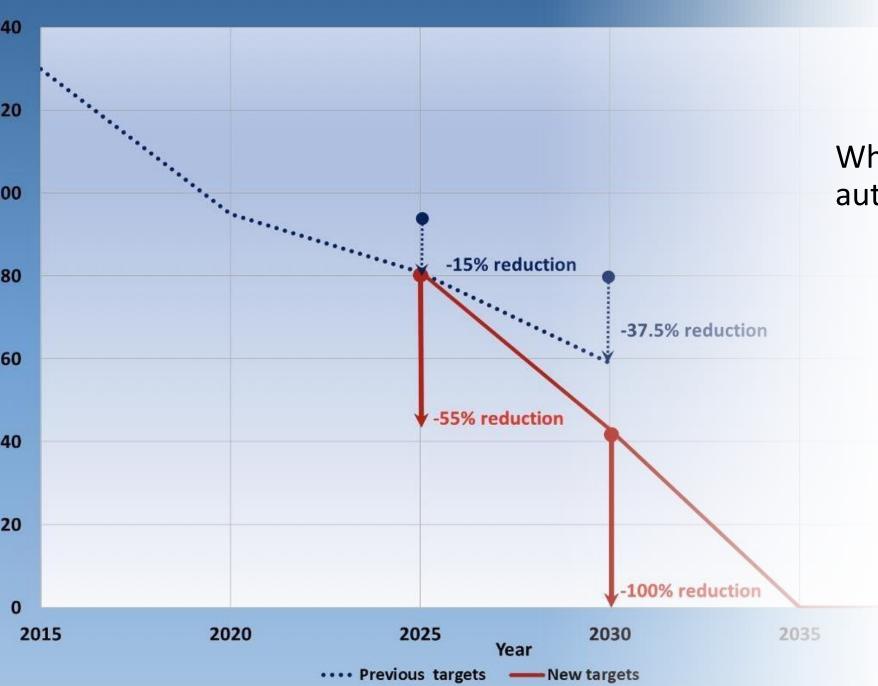
NO2 => separate limit
 NH3 => Mandatory SCR system

- PM/PN from Tyres/Brakes
 Durability => Extension / Removal, Guarantee
 RDE
- Focused Testing => Cold Start / High Load


EURO 7 – WHAT CONSEQUENCES FOR INDUSTRY?

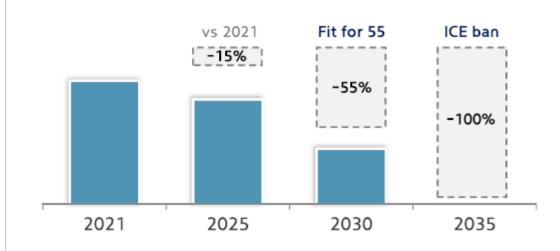
- > NO2 => separate limit
- > NH3 => Mandatory SCR system

- > PM/PN from Tyres/Brakes
- Durability => Extension / Removal, Guarantee
- ➢ RDE
- Focused Testing => Cold Start / High Load


EURO 7 - ELECTRIC VEHICLES IMPACT

EU 'Fit For 55' Package

CAR INDUSTRY AFFECTED BY 3 WORK PACKAGES



What does this mean for the automotive industry?

THE ROADMAP HAS BEEN REDRAWN

Year	2020	2025	2030	2035
Target for cars	95g CO2/km)	-15% (81g CO2/km)	-55% (43g CO2/km)	-100% (0g CO2/km)
Target for vans	147g CO2/km)	-15% (125g CO2/km)	-50% (74g CO2/km)	-100% (0g CO2/km)
Comments	Cars and vans have separate fleet average targets	Unchanged from previous targets	A tightening of the previous -37.5% reduction for new cars (-31% for new vans)	The -100% reduction for 2035 effectively bans ICE petrol & diesel cars by 2035,

1. CO2 emission standards for cars and vans

CO2 reduction of 55% requires high EV sales share

2. Alternative fuels infrastructure Regulation

- Charging infrastructure is crucial for the required uptake of E-mobility
- ACEA is asking for 6 million public charging points until 2030

Member States are reluctant to invest in infrastructure

3. Renewable energy directive

- The electricity for E-mobility has to be renewable
- Requirements are set to increase this share

Electricity for E-mobility should not from coal power plant

WHAT ABOUT COSTS?

-37.5% by 2030 versus 2021 baseline	
2017 European Commission estimate (EC, 2017)	€1,610
2018 ICCT estimate (ICCT, 2018)	€870
2021 ICCT estimate (ICCT, 2021)	€940
-50% by 2030 versus 2021 baseline	
2017 European Commission estimate	€2,750
2018 ICCT estimate	€1,160
2021 ICCT estimate	€1,220
2021 European Commission estimate	€1,910

How will 2030 and 2035 look?

2020

2030 => - 55% => 43g CO2/Km

• 10% EV/ PHEV

- 50% EV/ PHEV
- **30% HEV**
- 20% ICE/ MHEV

How will 2030 and 2035 look?

2020

• 10% EV/ PHEV

2030 => - 55% => 43g CO2/Km

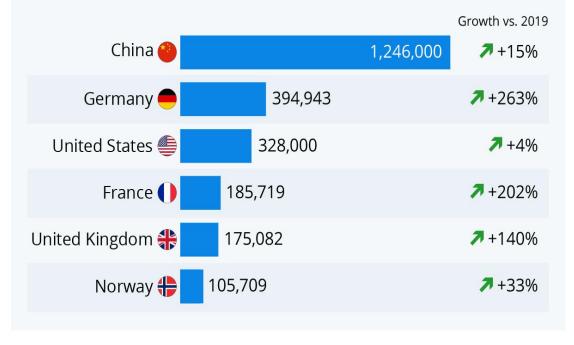
- 50% EV/ PHEV
- o 30% HEV
- 20% ICE/ MHEV

How will 2030 and 2035 look?

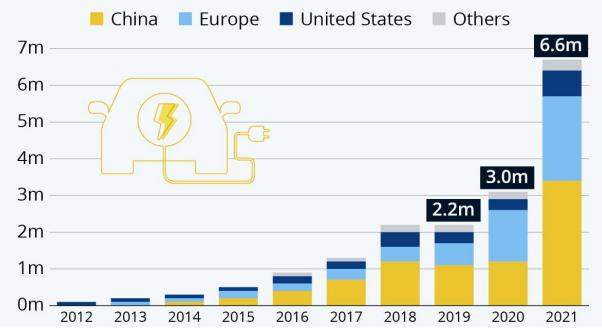
2020

• 10% EV/ PHEV

2030 => - 55% => 43g CO2/Km


- 50% EV/ PHEV
- o 30% HEV
- 20% ICE/ MHEV

TOWARDS **O** EMISSIONS!


Who Leads the Charge Towards Electric Mobility?

Largest markets in terms of plug-in electric passenger car sales in 2020^{*}

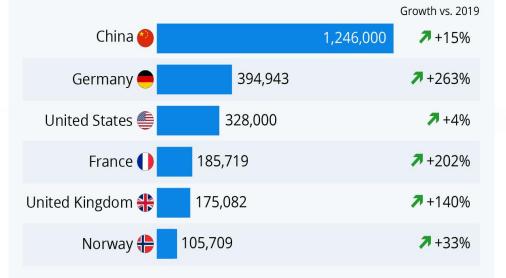
Global Electric Car Sales Doubled in 2021

Global registrations of electric vehicles (incl. plug-in hybrids), by region*

TOWARDS **O** EMISSIONS! - PORTUGAL

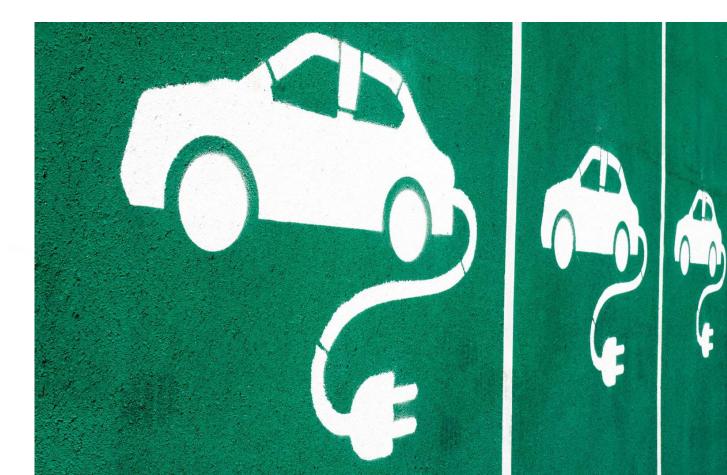
EV 2020 => 5,4% M/S

EV 2021 => 9,1% M/S (+63%)


EV 2022 YTM => 10,0% M/S (+88%)

NOV 2021 => 18,1%

Best EV month ever


Who Leads the Charge Towards Electric Mobility?

Largest markets in terms of plug-in electric passenger car sales in 2020^{*}

TOWARDS O EMISSIONS! - PORTUGAL

THE NEED FOR PUBLIC POLICIES

TOWARDS O EMISSIONS! - PORTUGAL

THE NEED FOR PUBLIC POLICIES

1. Recover end of life scrappage incentives, encouraging the purchase of low emission vehicles. This is the only way that truly allows and fastens the fleet renewal;

2. The financial framework of incentives for the purchase of electric vehicles should be able to benefit from funds from the PRR, and not just to be based on the State Budget or the Environmental Fund. Fleet renewal is a good part of the Energetic Transition;

3. Implement a consistent, predictable and universal program of direct incentives for the purchase of all kinds of electrified vehicles;

4. Transfer Tax burden from acquisition to usage, easing the acquisition;

5. For the new model of automotive taxation in the post-decarbonization period, a broad debate should be proposed between Authorities and all stakeholders, in order to avoid unilateral solutions by the State and to find consensus solutions.

THANK YOU!

diam'r.

10.000

Ricardo Soares ricardo.soares@hyundai.pt