8. Uma central hidrelétrica tem uma queda útil de 400 m. Num dos grupos em serviço, a potência aos terminais do alternador entregue ao transformador é 100 MVA, com cosφ igual a 0,85 indutivo, sendo a tensão aos terminais do alternador igual a 12 kV. As perdas no alternador são 3,5 MW e as perdas no transformador e serviços auxiliares de 1300 kW. Calcule:

a) O rendimento do alternador e o rendimento do transformador mais serviços auxiliares.

b) O caudal que este grupo está a turbinar, se o rendimento da turbina for de 0,90 p.u.

(c) A intensidade de corrente por fase aos terminais do alternador e a potência reativa fornecida pelo alternador.

\[
H = 400 \text{ m} \quad S_{Alt} = 100 \text{ MVA} \quad \cos \phi = 0,85 \quad U_{Alt} = 12 \text{ kV}
\]

\[
P_{alt} = 3,5 \text{ MW} \quad P_{transf} = 1300 \text{ kW} \quad (\text{poder absoluto})
\]

\[
\eta_{alt} = \frac{P_{alt}}{\eta_{transf}} \quad \eta_{alt} = \frac{P_{alt}}{P_{alt} + P_{transf}} \quad \eta_{transf} = \frac{P_{alt} - P_{transf}}{P_{alt}} \quad \eta_{transf} = \frac{83,7}{85} = 0,985
\]

\[
\eta_{globa} = \eta_{transf} \quad \eta_{att} \eta_{transf} \quad \eta_{globa} = 0,90 \times 0,960 \times 0,985 = 0,851
\]

\[
\eta_{att} = \eta_{globa} \eta_{transf} \quad \eta_{globa} = 98,35 \text{ MW}
\]

\[
P_{hid} = \frac{83,7}{0,851} = 98,35 \text{ MW}
\]

\[
Q = \frac{98350 \times 10^3}{1000 \times 3 \times 911 \times 400} = 25,1 \text{ m}^3/\text{s}
\]

\[
P_{alt} = 100 \times 0,85 \text{ MW} \quad S_{alt} = 100 \text{ MVA} \quad S = 13 \text{ U.I}
\]

\[
I = \frac{100 \times 10^6}{\sqrt{3} \times 12 \times 10^3} = 4811 \text{ A}
\]

\[
Q_{alt} = P_{alt} \tan \phi \quad Q_{alt} = S_{alt} \tan \phi
\]

\[
Q_{alt} = 8,5 \times 0,8 \times 31,8 \text{ MW} = 52,7 \text{ MVA}
\]